Przedmioty

Przedmioty

Więcej

Wzory i zadania funkcji kwadratowej - postać kanoniczna, PDF

24.09.2022

10631

608

Udostępnij

Zapisz

Pobierz


<h2 id="thequadraticfunction">The Quadratic Function</h2>
<p>The quadratic function, also known as the second-degree polynomial, can be expr
<h2 id="thequadraticfunction">The Quadratic Function</h2>
<p>The quadratic function, also known as the second-degree polynomial, can be expr
<h2 id="thequadraticfunction">The Quadratic Function</h2>
<p>The quadratic function, also known as the second-degree polynomial, can be expr
<h2 id="thequadraticfunction">The Quadratic Function</h2>
<p>The quadratic function, also known as the second-degree polynomial, can be expr
<h2 id="thequadraticfunction">The Quadratic Function</h2>
<p>The quadratic function, also known as the second-degree polynomial, can be expr

The Quadratic Function

The quadratic function, also known as the second-degree polynomial, can be expressed in the canonical form as ax² + bx + c.

Canonical Form of the Quadratic Function

The canonical form of the quadratic function is: a(x - p)² + q, where [p₁q] is the turning point and A > 0.

The Position of the Function's Graph

The general formula for the position of the function's graph is: y = a(x - x₁)(x - x₂), where x₁ and x₂ are the roots, and A = b² - 4ac.

Properties

The quadratic function has various properties such as the domain (D: x € R), the range (ye (-0,5>), the axis of symmetry (x = p), the turning point (H(p, q)), and the values of the function (f(p)).

Examples of Tasks

  1. Given the function y = 3(x - 4)² + 5, determine the range.
  2. Calculate the discriminant for the function y = -x² + 2x - 6.
  3. Find the maximum interval of monotonicity for the function f(x) = -3(x + 5)² - 1.

Solutions

a) The range of the function y = 3(x - 4)² + 5 is: y < 5 and y > -∞.
b) The discriminant for the function y = -x² + 2x - 6 is 20.
c) The maximum interval of monotonicity for the function f(x) = -3(x + 5)² - 1 is: (-∞, -5> and <-5, +∞).

Additional Examples

  1. If the minimum value of the function is -10 for x = 4 and the graph intersects the x-axis at (4, -10) and (2,3), find the equation of the quadratic function.
  2. Determine the range of the function if the graph decreases in the interval (-∞, 6) and intersects the x-axis at (0,1).
  3. If the function takes positive values in the interval (-2, 8) and the maximum value is 10, find the equation of the quadratic function.

By understanding the canonical form, the position of the function's graph, and its properties, one can effectively solve problems related to the quadratic function. Regular practice and solving various types of tasks are essential to master the concept.

For more exercises and solutions related to the quadratic function, refer to additional resources such as PDF files with quadratic function exercises and solutions. Understanding the quadratic function in its canonical form and various properties such as the axis of symmetry and values of the function is crucial for further progress in mathematical studies and problem-solving.

Podsumowanie - Matematyka

  • Quadratic function is also known as the second-degree polynomial
  • It can be expressed in the canonical form as ax² + bx + c
  • The position of the function's graph can be determined using the general formula y = a(x - x₁)(x - x₂)
  • The function has properties such as domain, range, axis of symmetry, and turning point
  • Regular practice and solving various types of tasks are essential to master the concept of the quadratic function

For more exercises and solutions related to the quadratic function, refer to additional resources such as PDF files with quadratic function exercises and solutions. Understanding the quadratic function in its canonical form and various properties such as the axis of symmetry and values of the function is crucial for further progress in mathematical studies and problem-solving.

460 Obserwujących

-

Często zadawane pytania na temat Matematyka

Q: What is the general formula for the position of the function's graph?

A: The general formula for the position of the function's graph is: y = a(x - x₁)(x - x₂), where x₁ and x₂ are the roots, and A = b² - 4ac.

Q: What are the properties of the quadratic function?

A: The properties of the quadratic function include the domain (D: x € R), the range (ye (-0,5>), the axis of symmetry (x = p), the turning point (H(p, q)), and the values of the function (f(p)).

Q: For the function y = 3(x - 4)² + 5, what is the range?

A: The range of the function y = 3(x - 4)² + 5 is: y < 5 and y > -∞.

Q: What is the discriminant for the function y = -x² + 2x - 6?

A: The discriminant for the function y = -x² + 2x - 6 is 20.

Q: If the function takes positive values in the interval (-2, 8) and the maximum value is 10, what is the equation of the quadratic function?

A: The equation of the quadratic function is y = -2(x-3)(x-7).

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

13 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 11 krajach

900 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.