Przedmioty

Przedmioty

Więcej

Geometria płaska: Okręgi, Koła i Twierdzenie Pitagorasa - Zadania i Wzory

Zobacz

Geometria płaska: Okręgi, Koła i Twierdzenie Pitagorasa - Zadania i Wzory

Rozpoczynam generowanie podsumowania SEO w języku polskim:

Kompleksowy przewodnik po geometrii płaskiej, ze szczególnym uwzględnieniem okręgów, kół oraz podstawowych twierdzeń matematycznych dla uczniów szkół średnich.

• Dokument zawiera szczegółowe omówienie Geometrii płaskiej okręgi i koła wzory oraz podstawowych pojęć geometrycznych
• Przedstawia kluczowe twierdzenia, w tym Zastosowanie twierdzenia Pitagorasa w życiu codziennym
• Obejmuje zagadnienia dotyczące Środkowej trójkąta i jej właściwości
• Zawiera praktyczne przykłady i zadania z zakresu Koła i okręgi zadania klasa 8

7.05.2022

17362

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Geometria płaska - okręgi i koła

Ta strona rozpoczyna nowy rozdział poświęcony okręgom i kołom w geometrii płaskiej. Zawiera ona powtórzenie wiadomości z klasy pierwszej oraz przykładowe zadania, które pozwalają utrwalić wcześniej zdobytą wiedzę.

Example: Zadanie 4.1 dotyczy wyznaczania miar dwóch kątów przyległych, gdy jeden z nich jest cztery razy większy od drugiego. Rozwiązanie: x + 4x = 180°, stąd x = 36°, a drugi kąt ma miarę 144°.

Example: Zadanie 4.2 wymaga wyznaczenia miary kąta wklęsłego AOB, gdzie O jest punktem przecięcia dwusiecznych kątów w trójkącie ABC.

Example: Zadanie 4.3 dotyczy obliczenia miary kąta ACB w trójkącie, gdy znana jest miara kąta rozwartego przecięcia się dwusiecznych kątów przy wierzchołkach A i B.

Example: Zadanie 4.4 wymaga obliczenia miary jednego z kątów zewnętrznych trójkąta, gdy znana jest suma miar dwóch pozostałych kątów zewnętrznych.

Te zadania są doskonałym przykładem zastosowania twierdzenia Pitagorasa - zadania oraz innych twierdzeń z geometrii płaskiej w praktyce. Rozwiązywanie takich zadań pomaga w przygotowaniu do sprawdzianów z geometrii płaskiej okręgi i koła 2 liceum.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Własności trójkątów i cechy przystawania

Ta strona skupia się na bardziej zaawansowanych właściwościach trójkątów oraz cechach ich przystawania. Omówiono tu zależności między długościami boków a miarami kątów, a także pojęcia wysokości i środkowej trójkąta.

Definicja: Wysokość trójkąta to odcinek łączący wierzchołek trójkąta z prostą zawierającą przeciwległy bok, prostopadły do tej prostej.

Definicja: Środkowa trójkąta to odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku.

Przedstawiono trzy cechy przystawania trójkątów (bbb, bkb, kbk), które są kluczowe przy rozwiązywaniu zadań z geometrii płaskiej okręgi i koła 2 liceum sprawdzian pdf.

Highlight: Twierdzenie Pitagorasa stanowi, że w trójkącie prostokątnym kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokątnych.

Omówiono również twierdzenie o środkowych w trójkącie, które przecinają się w punkcie dzielącym każdą z nich w stosunku 1:2. Ta wiedza jest często wykorzystywana w zadaniach z geometrii płaskiej - okręgi i koła sprawdzian pazdro.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Twierdzenie Talesa i podobieństwo trójkątów

Ta strona przedstawia kluczowe twierdzenie Talesa oraz cechy podobieństwa trójkątów, które są fundamentalne dla rozwiązywania zadań z geometrii płaskiej okręgi i koła PDF.

Definicja: Twierdzenie Talesa mówi, że jeżeli ramiona kąta lub ich przedłużenia przetniemy dwiema prostymi równoległymi, to stosunek długości odcinków wyciętych przez te proste na jednym ramieniu jest równy stosunkowi długości odpowiednich odcinków na drugim ramieniu.

Przedstawiono również twierdzenie o odcinku łączącym środki boków trójkąta, które jest często wykorzystywane w kołach i okręgach zadania klasa 8.

Highlight: Cechy podobieństwa trójkątów (bbb, bkb, kkk) są kluczowe przy rozwiązywaniu zadań z podobieństwa figur.

Strona zawiera także informacje o sumie kątów wewnętrznych wielokątów oraz wzory na wysokość trójkąta równobocznego, które są przydatne przy rozwiązywaniu zadań z zastosowania twierdzenia Pitagorasa w życiu codziennym.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Powtórzenie wiadomości z geometrii z klasy 1

Ta strona zawiera kluczowe definicje i twierdzenia z geometrii płaskiej, które są niezbędne do dalszej nauki. Omówiono tu pojęcia takie jak symetralna odcinka, dwusieczna kąta oraz podstawowe własności trójkątów.

Definicja: Symetralna odcinka to prosta prostopadła do tego odcinka, dzieląca go na dwie równe części. Jest ona zbiorem punktów równoodległych od końców odcinka.

Definicja: Dwusieczna kąta to półprosta o początku w wierzchołku kąta, dzieląca go na dwa równe kąty. W przypadku kąta wypukłego jest ona zbiorem punktów równoodległych od ramion kąta.

Przedstawiono również twierdzenie o dwóch prostych równoległych przeciętych trzecią prostą, które ma szerokie zastosowanie w geometrii płaskiej okręgi i koła wzory.

Highlight: Suma miar kątów wewnętrznych trójkąta jest zawsze równa 180°, co jest fundamentalną właściwością wykorzystywaną w wielu zadaniach.

Strona zawiera także informacje o kątach zewnętrznych trójkąta oraz zależnościach między długościami boków a miarami kątów w trójkącie.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Zobacz

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

13 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.

Geometria płaska: Okręgi, Koła i Twierdzenie Pitagorasa - Zadania i Wzory

Rozpoczynam generowanie podsumowania SEO w języku polskim:

Kompleksowy przewodnik po geometrii płaskiej, ze szczególnym uwzględnieniem okręgów, kół oraz podstawowych twierdzeń matematycznych dla uczniów szkół średnich.

• Dokument zawiera szczegółowe omówienie Geometrii płaskiej okręgi i koła wzory oraz podstawowych pojęć geometrycznych
• Przedstawia kluczowe twierdzenia, w tym Zastosowanie twierdzenia Pitagorasa w życiu codziennym
• Obejmuje zagadnienia dotyczące Środkowej trójkąta i jej właściwości
• Zawiera praktyczne przykłady i zadania z zakresu Koła i okręgi zadania klasa 8

7.05.2022

17362

 

1/2

 

Matematyka

907

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Geometria płaska - okręgi i koła

Ta strona rozpoczyna nowy rozdział poświęcony okręgom i kołom w geometrii płaskiej. Zawiera ona powtórzenie wiadomości z klasy pierwszej oraz przykładowe zadania, które pozwalają utrwalić wcześniej zdobytą wiedzę.

Example: Zadanie 4.1 dotyczy wyznaczania miar dwóch kątów przyległych, gdy jeden z nich jest cztery razy większy od drugiego. Rozwiązanie: x + 4x = 180°, stąd x = 36°, a drugi kąt ma miarę 144°.

Example: Zadanie 4.2 wymaga wyznaczenia miary kąta wklęsłego AOB, gdzie O jest punktem przecięcia dwusiecznych kątów w trójkącie ABC.

Example: Zadanie 4.3 dotyczy obliczenia miary kąta ACB w trójkącie, gdy znana jest miara kąta rozwartego przecięcia się dwusiecznych kątów przy wierzchołkach A i B.

Example: Zadanie 4.4 wymaga obliczenia miary jednego z kątów zewnętrznych trójkąta, gdy znana jest suma miar dwóch pozostałych kątów zewnętrznych.

Te zadania są doskonałym przykładem zastosowania twierdzenia Pitagorasa - zadania oraz innych twierdzeń z geometrii płaskiej w praktyce. Rozwiązywanie takich zadań pomaga w przygotowaniu do sprawdzianów z geometrii płaskiej okręgi i koła 2 liceum.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Własności trójkątów i cechy przystawania

Ta strona skupia się na bardziej zaawansowanych właściwościach trójkątów oraz cechach ich przystawania. Omówiono tu zależności między długościami boków a miarami kątów, a także pojęcia wysokości i środkowej trójkąta.

Definicja: Wysokość trójkąta to odcinek łączący wierzchołek trójkąta z prostą zawierającą przeciwległy bok, prostopadły do tej prostej.

Definicja: Środkowa trójkąta to odcinek łączący wierzchołek trójkąta ze środkiem przeciwległego boku.

Przedstawiono trzy cechy przystawania trójkątów (bbb, bkb, kbk), które są kluczowe przy rozwiązywaniu zadań z geometrii płaskiej okręgi i koła 2 liceum sprawdzian pdf.

Highlight: Twierdzenie Pitagorasa stanowi, że w trójkącie prostokątnym kwadrat długości przeciwprostokątnej jest równy sumie kwadratów długości przyprostokątnych.

Omówiono również twierdzenie o środkowych w trójkącie, które przecinają się w punkcie dzielącym każdą z nich w stosunku 1:2. Ta wiedza jest często wykorzystywana w zadaniach z geometrii płaskiej - okręgi i koła sprawdzian pazdro.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Twierdzenie Talesa i podobieństwo trójkątów

Ta strona przedstawia kluczowe twierdzenie Talesa oraz cechy podobieństwa trójkątów, które są fundamentalne dla rozwiązywania zadań z geometrii płaskiej okręgi i koła PDF.

Definicja: Twierdzenie Talesa mówi, że jeżeli ramiona kąta lub ich przedłużenia przetniemy dwiema prostymi równoległymi, to stosunek długości odcinków wyciętych przez te proste na jednym ramieniu jest równy stosunkowi długości odpowiednich odcinków na drugim ramieniu.

Przedstawiono również twierdzenie o odcinku łączącym środki boków trójkąta, które jest często wykorzystywane w kołach i okręgach zadania klasa 8.

Highlight: Cechy podobieństwa trójkątów (bbb, bkb, kkk) są kluczowe przy rozwiązywaniu zadań z podobieństwa figur.

Strona zawiera także informacje o sumie kątów wewnętrznych wielokątów oraz wzory na wysokość trójkąta równobocznego, które są przydatne przy rozwiązywaniu zadań z zastosowania twierdzenia Pitagorasa w życiu codziennym.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Powtórzenie wiadomości z geometrii z klasy 1

Ta strona zawiera kluczowe definicje i twierdzenia z geometrii płaskiej, które są niezbędne do dalszej nauki. Omówiono tu pojęcia takie jak symetralna odcinka, dwusieczna kąta oraz podstawowe własności trójkątów.

Definicja: Symetralna odcinka to prosta prostopadła do tego odcinka, dzieląca go na dwie równe części. Jest ona zbiorem punktów równoodległych od końców odcinka.

Definicja: Dwusieczna kąta to półprosta o początku w wierzchołku kąta, dzieląca go na dwa równe kąty. W przypadku kąta wypukłego jest ona zbiorem punktów równoodległych od ramion kąta.

Przedstawiono również twierdzenie o dwóch prostych równoległych przeciętych trzecią prostą, które ma szerokie zastosowanie w geometrii płaskiej okręgi i koła wzory.

Highlight: Suma miar kątów wewnętrznych trójkąta jest zawsze równa 180°, co jest fundamentalną właściwością wykorzystywaną w wielu zadaniach.

Strona zawiera także informacje o kątach zewnętrznych trójkąta oraz zależnościach między długościami boków a miarami kątów w trójkącie.

Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę
Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę
Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę
Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę
Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę
Powtórzenie wiadomości z geometrii z klasy 1
Symetralną odcinka - nazywamy prostą prostopadłą do tego odcinka, dzielącą go na dwie równe czę

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

13 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.