Przedmioty

Przedmioty

Więcej

Zabawa z Równaniami Wielomianowymi - Przykłady i Rozwiązania

Zobacz

Zabawa z Równaniami Wielomianowymi - Przykłady i Rozwiązania

Równania wielomianowe (polynomial equations) are a fundamental topic in algebra, involving equations where the highest power of the variable is greater than one. This guide covers various types of polynomial equations, methods for solving them, and practical examples to enhance understanding.

Key points:

  • Explores different degrees of polynomial equations
  • Demonstrates various solving techniques
  • Includes examples with step-by-step solutions
  • Covers equations with parameters
  • Addresses related concepts like inequalities and graphing

28.03.2022

836

zadanie
W(x)=x³+4x²+x-6
W(x): (x-1) X/1/1/6/6
X1414141-6
1156 0
zadanie 5
W(x)=x+5x+7x+3
W(x): (x+1)
zadanie 6
W(x)=x²+x²+1
Równania wielomi

Zobacz

Page 1: Introduction to Polynomial Equations

This page introduces the concept of równania wielomianowe (polynomial equations) and provides several examples of how to solve them.

The page begins with a problem involving a cubic polynomial W(x) = x³ + 4x² + x - 6. It demonstrates the process of factoring and finding roots.

Example: W(x) = x³ + 4x² + x - 6 is factored as W(x): (x-1)(x+1)(x+6)

Next, it presents a quadratic equation and its solution method.

Highlight: The page emphasizes the importance of factoring in solving polynomial equations.

The document then moves on to more complex equations, including those with higher degrees and multiple variables.

Vocabulary: "Równania wielomianowe" translates to "polynomial equations" in English.

Several problems are presented, each showcasing different techniques for solving polynomial equations, such as factoring, using the quadratic formula, and identifying special patterns.

Example: (x² - 4)(x + 2)(x³ - 8) = 0 is solved by breaking it down into simpler equations: x² - 4 = 0, x + 2 = 0, and x³ - 8 = 0.

The page concludes with more advanced problems, demonstrating how to handle equations with multiple factors and higher degrees.

zadanie
W(x)=x³+4x²+x-6
W(x): (x-1) X/1/1/6/6
X1414141-6
1156 0
zadanie 5
W(x)=x+5x+7x+3
W(x): (x+1)
zadanie 6
W(x)=x²+x²+1
Równania wielomi

Zobacz

Page 2: Advanced Polynomial Equation Techniques

This page delves deeper into metody rozwiązywania równań wielomianowych (methods for solving polynomial equations), presenting more complex problems and their solutions.

The page starts with a cubic equation x³ + x² - 2 = 0, demonstrating a substitution method to simplify the problem.

Example: For x³ + x² - 2 = 0, let t = x². This transforms the equation into t + t - 2 = 0, which is easier to solve.

Next, it covers equations that can be factored into simpler forms.

Highlight: The importance of recognizing common factors and patterns in polynomial equations is emphasized throughout this page.

The document then moves on to equations that require more advanced techniques, such as completing the square or using the rational root theorem.

Vocabulary: "Nierówności wielomianowe" refers to "polynomial inequalities", which are related to polynomial equations but involve inequality signs.

Several problems demonstrate how to handle equations with multiple roots, including complex roots.

Example: The equation 3x² + 9x = 2x + 10 is transformed into x² + 3x - 10/3 = 0, which can be solved using the quadratic formula.

The page concludes with examples of higher-degree polynomials and how to approach them systematically.

Definition: A polynomial equation is an equation of the form a₀xⁿ + a₁xⁿ⁻¹ + ... + aₙ₋₁x + aₙ = 0, where n is a non-negative integer and a₀ ≠ 0.

zadanie
W(x)=x³+4x²+x-6
W(x): (x-1) X/1/1/6/6
X1414141-6
1156 0
zadanie 5
W(x)=x+5x+7x+3
W(x): (x+1)
zadanie 6
W(x)=x²+x²+1
Równania wielomi

Zobacz

Page 3: Polynomial Equations with Parameters and Special Cases

This final page focuses on równania wielomianowe z parametrem (polynomial equations with parameters) and explores special cases and advanced problem-solving techniques.

The page begins with a complex equation involving both cubic and quadratic terms: ¼x³ - 81 = x² + 2x + 4. It demonstrates how to rearrange and solve such equations step by step.

Example: ¼x³ - 81 = x² + 2x + 4 is transformed into ¼x³ - x² - 2x - 85 = 0, which can be solved using factoring and the rational root theorem.

Next, it introduces equations with parameters, where certain coefficients are represented by variables.

Highlight: Understanding how parameters affect the solutions of polynomial equations is crucial for advanced problem-solving in algebra.

The document then covers the general form of quadratic equations f(x) = ax² + bx + c, and how to analyze them when a, b, and c are parameters.

Vocabulary: "Wielomiany zadania maturalne" refers to "polynomial problems in matriculation exams", indicating the importance of this topic in advanced mathematics education.

Several problems demonstrate how to solve and analyze equations where the coefficients contain parameters.

Example: (10x + 10)(x² + (m+2)x + (m-1)²) = 0 is analyzed for different values of the parameter m to determine the nature and number of solutions.

The page concludes with a discussion on the relationship between the discriminant and the nature of roots in parametric equations.

Definition: The discriminant of a quadratic equation ax² + bx + c = 0 is given by b² - 4ac. Its value determines the nature of the roots (real and distinct, real and equal, or complex).

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

13 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.

Zabawa z Równaniami Wielomianowymi - Przykłady i Rozwiązania

Równania wielomianowe (polynomial equations) are a fundamental topic in algebra, involving equations where the highest power of the variable is greater than one. This guide covers various types of polynomial equations, methods for solving them, and practical examples to enhance understanding.

Key points:

  • Explores different degrees of polynomial equations
  • Demonstrates various solving techniques
  • Includes examples with step-by-step solutions
  • Covers equations with parameters
  • Addresses related concepts like inequalities and graphing

28.03.2022

836

 

1/2

 

Matematyka

23

zadanie
W(x)=x³+4x²+x-6
W(x): (x-1) X/1/1/6/6
X1414141-6
1156 0
zadanie 5
W(x)=x+5x+7x+3
W(x): (x+1)
zadanie 6
W(x)=x²+x²+1
Równania wielomi

Darmowe notatki od najlepszych studentów - odblokuj teraz!

Darmowe notatki do każdego przedmiotu, stworzone przez najlepszych studentów

Uzyskaj lepsze oceny dzięki inteligentnemu wsparciu AI

Ucz się mądrzej, stresuj się mniej - zawsze i wszędzie

Zarejestruj się za poprzez email

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Page 1: Introduction to Polynomial Equations

This page introduces the concept of równania wielomianowe (polynomial equations) and provides several examples of how to solve them.

The page begins with a problem involving a cubic polynomial W(x) = x³ + 4x² + x - 6. It demonstrates the process of factoring and finding roots.

Example: W(x) = x³ + 4x² + x - 6 is factored as W(x): (x-1)(x+1)(x+6)

Next, it presents a quadratic equation and its solution method.

Highlight: The page emphasizes the importance of factoring in solving polynomial equations.

The document then moves on to more complex equations, including those with higher degrees and multiple variables.

Vocabulary: "Równania wielomianowe" translates to "polynomial equations" in English.

Several problems are presented, each showcasing different techniques for solving polynomial equations, such as factoring, using the quadratic formula, and identifying special patterns.

Example: (x² - 4)(x + 2)(x³ - 8) = 0 is solved by breaking it down into simpler equations: x² - 4 = 0, x + 2 = 0, and x³ - 8 = 0.

The page concludes with more advanced problems, demonstrating how to handle equations with multiple factors and higher degrees.

zadanie
W(x)=x³+4x²+x-6
W(x): (x-1) X/1/1/6/6
X1414141-6
1156 0
zadanie 5
W(x)=x+5x+7x+3
W(x): (x+1)
zadanie 6
W(x)=x²+x²+1
Równania wielomi

Darmowe notatki od najlepszych studentów - odblokuj teraz!

Darmowe notatki do każdego przedmiotu, stworzone przez najlepszych studentów

Uzyskaj lepsze oceny dzięki inteligentnemu wsparciu AI

Ucz się mądrzej, stresuj się mniej - zawsze i wszędzie

Zarejestruj się za poprzez email

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Page 2: Advanced Polynomial Equation Techniques

This page delves deeper into metody rozwiązywania równań wielomianowych (methods for solving polynomial equations), presenting more complex problems and their solutions.

The page starts with a cubic equation x³ + x² - 2 = 0, demonstrating a substitution method to simplify the problem.

Example: For x³ + x² - 2 = 0, let t = x². This transforms the equation into t + t - 2 = 0, which is easier to solve.

Next, it covers equations that can be factored into simpler forms.

Highlight: The importance of recognizing common factors and patterns in polynomial equations is emphasized throughout this page.

The document then moves on to equations that require more advanced techniques, such as completing the square or using the rational root theorem.

Vocabulary: "Nierówności wielomianowe" refers to "polynomial inequalities", which are related to polynomial equations but involve inequality signs.

Several problems demonstrate how to handle equations with multiple roots, including complex roots.

Example: The equation 3x² + 9x = 2x + 10 is transformed into x² + 3x - 10/3 = 0, which can be solved using the quadratic formula.

The page concludes with examples of higher-degree polynomials and how to approach them systematically.

Definition: A polynomial equation is an equation of the form a₀xⁿ + a₁xⁿ⁻¹ + ... + aₙ₋₁x + aₙ = 0, where n is a non-negative integer and a₀ ≠ 0.

zadanie
W(x)=x³+4x²+x-6
W(x): (x-1) X/1/1/6/6
X1414141-6
1156 0
zadanie 5
W(x)=x+5x+7x+3
W(x): (x+1)
zadanie 6
W(x)=x²+x²+1
Równania wielomi

Darmowe notatki od najlepszych studentów - odblokuj teraz!

Darmowe notatki do każdego przedmiotu, stworzone przez najlepszych studentów

Uzyskaj lepsze oceny dzięki inteligentnemu wsparciu AI

Ucz się mądrzej, stresuj się mniej - zawsze i wszędzie

Zarejestruj się za poprzez email

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Page 3: Polynomial Equations with Parameters and Special Cases

This final page focuses on równania wielomianowe z parametrem (polynomial equations with parameters) and explores special cases and advanced problem-solving techniques.

The page begins with a complex equation involving both cubic and quadratic terms: ¼x³ - 81 = x² + 2x + 4. It demonstrates how to rearrange and solve such equations step by step.

Example: ¼x³ - 81 = x² + 2x + 4 is transformed into ¼x³ - x² - 2x - 85 = 0, which can be solved using factoring and the rational root theorem.

Next, it introduces equations with parameters, where certain coefficients are represented by variables.

Highlight: Understanding how parameters affect the solutions of polynomial equations is crucial for advanced problem-solving in algebra.

The document then covers the general form of quadratic equations f(x) = ax² + bx + c, and how to analyze them when a, b, and c are parameters.

Vocabulary: "Wielomiany zadania maturalne" refers to "polynomial problems in matriculation exams", indicating the importance of this topic in advanced mathematics education.

Several problems demonstrate how to solve and analyze equations where the coefficients contain parameters.

Example: (10x + 10)(x² + (m+2)x + (m-1)²) = 0 is analyzed for different values of the parameter m to determine the nature and number of solutions.

The page concludes with a discussion on the relationship between the discriminant and the nature of roots in parametric equations.

Definition: The discriminant of a quadratic equation ax² + bx + c = 0 is given by b² - 4ac. Its value determines the nature of the roots (real and distinct, real and equal, or complex).

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

13 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.