Page 1: Odczytywanie Własności Funkcji z Wykresu
This page presents a comprehensive example of odczytywanie własności funkcji z wykresu zadania exercisesonreadingfunctionpropertiesfromagraph. The graph shown is of a piecewise function, and various properties are identified and described.
Vocabulary: Piecewise function - a function defined by different expressions on different intervals of its domain.
The domain of the function is identified as x ∈ −7,8, indicating the function is defined for all x values between and including -7 and 8. This is an essential aspect of odczytywanie własności funkcji z wykresu klasa 1 liceum readingfunctionpropertiesfromagraphfor1styearhighschool.
Definition: Domain - the set of all possible input values x−values for which the function is defined.
The range of the function is given as y ∈ −1,3, showing the set of all possible output values. This demonstrates a key aspect of jak odczytać zbiór wartości funkcji howtoreadtherangeofafunction.
Highlight: The range is a crucial property in understanding the behavior of a function and is often a focus in odczytywanie własności funkcji z wykresu zadania maturalne maturaexamtasksonreadingfunctionpropertiesfromgraphs.
The monotonicity of the function is described for different intervals, showcasing jak określić monotoniczność funkcji howtodeterminethemonotonicityofafunction. The function is increasing on −7,−4 and 0,3, decreasing on −4,0 and 7,8, and constant on 3,7.
Example: For instance, the function is increasing on the interval −7,−4, meaning as x increases from -7 to -4, y also increases.
The zero of the function is identified at x = 2, which is a key point in odczytywanie własności funkcji kwadratowej z wykresu readingpropertiesofquadraticfunctionsfromgraphs, although this particular function is not quadratic.
Definition: Zero of a function - a point where the function's value equals zero, i.e., where the graph crosses the x-axis.
Lastly, the extreme values are noted. The maximum value is y = 3, occurring at x = -7, and the minimum value is y = -1, occurring for all x in the interval 3,7. This illustrates an important aspect of zbiór wartości funkcji rangeofafunction analysis.
Highlight: The presence of a constant section where the function attains its minimum value over an interval is a noteworthy feature, often explored in monotoniczność funkcji zadania monotonicityoffunctionsexercises.