Otwórz aplikację

Przedmioty

Równania prostych i odcinków - jak je wyznaczyć?

Otwórz

243

4

user profile picture

ania gorzejewska

3.11.2022

Matematyka

geometria analityczna matematyka

Równania prostych i odcinków - jak je wyznaczyć?

Geometria analityczna: odcinki i proste w układzie współrzędnych. Kluczowe pojęcia obejmują długość odcinka, środek odcinka, równanie prostej oraz równanie okręgu. Dokument przedstawia wzory i definicje niezbędne do analizy geometrycznej figur na płaszczyźnie kartezjańskiej.

• Omówiono wzory na długość odcinka i współrzędne środka odcinka
• Przedstawiono różne formy równań prostej: kierunkowe, ogólne i przez dwa punkty
• Wyjaśniono warunki równoległości i prostopadłości prostych
• Zaprezentowano równanie okręgu w postaci kanonicznej i ogólnej

...

3.11.2022

10227

geometria
analityczna
odcinek w układzie wspołrzędnych
Drugość odcinka
Jeżeń A(X₁1₁) i B (x₂1 y₂) to arugość odcinka AB wyraża sie wzorem
I

Zobacz

Równoległość i prostopadłość prostych

Ten rozdział koncentruje się na warunkach równoległości i prostopadłości prostych w układzie współrzędnych, przedstawiając kluczowe definicje i wzory.

Równoległość prostych

Omówiono warunek równoległości prostych opisanych równaniami kierunkowymi.

Definicja: Proste o równaniach y = ax + b oraz y = a₁x + b₁ są równoległe wtedy i tylko wtedy, gdy a = a₁.

Prostopadłość prostych

Przedstawiono warunek prostopadłości prostych opisanych równaniami kierunkowymi.

Wzór: Proste y = ax + b oraz y = a₁x + b₁, gdzie a ≠ 0 i a₁ ≠ 0, są prostopadłe wtedy i tylko wtedy, gdy a · a₁ = -1.

Równanie prostej przechodzącej przez dwa punkty

Zaprezentowano wzór na równanie prostej przechodzącej przez dwa punkty.

Wzór: Dla punktów x1,y1x₁, y₁ i x2,y2x₂, y₂, gdzie x₁ ≠ x₂, równanie prostej ma postać: yy1y - y₁ / xx1x - x₁ = y2y1y₂ - y₁ / x2x1x₂ - x₁

Równanie ogólne prostej

Wprowadzono pojęcie równania ogólnego prostej.

Definicja: Równanie ogólne prostej ma postać Ax + By + C = 0, gdzie A² + B² ≠ 0.

Highlight: Równaniem ogólnym można opisać wszystkie proste w układzie współrzędnych, z wyjątkiem prostych prostopadłych do osi OX.

Równoległość i prostopadłość prostych w postaci ogólnej

Omówiono warunki równoległości i prostopadłości dla prostych opisanych równaniami ogólnymi.

Wzór: Proste Ax + By + C = 0 oraz A₁x + B₁y + C₁ = 0 są równoległe wtedy i tylko wtedy, gdy A/B = A₁/B₁.

Wzór: Proste Ax + By + C = 0 oraz A₁x + B₁y + C₁ = 0 są prostopadłe wtedy i tylko wtedy, gdy AA₁ + BB₁ = 0.

geometria
analityczna
odcinek w układzie wspołrzędnych
Drugość odcinka
Jeżeń A(X₁1₁) i B (x₂1 y₂) to arugość odcinka AB wyraża sie wzorem
I

Zobacz

Równanie okręgu

Ten rozdział skupia się na równaniu okręgu w układzie współrzędnych, przedstawiając jego różne formy i interpretacje geometryczne.

Równanie kanoniczne okręgu

Wprowadzono pojęcie równania kanonicznego okręgu.

Wzór: xx0x - x₀² + yy0y - y₀² = r², gdzie x0,y0x₀, y₀ to środek okręgu, a r to jego promień.

Równanie ogólne okręgu

Omówiono równanie ogólne okręgu i jego interpretację.

Wzór: x² + y² + ax + by + c = 0, gdzie a² + b² - 4c > 0.

Highlight: Z równania ogólnego okręgu można wyznaczyć współrzędne środka i promień:

  • Środek: Sa/2,b/2-a/2, -b/2
  • Promień: r = √(a2+b24c(a² + b² - 4c / 4)

Interpretacja geometryczna

Wyjaśniono, jak odczytywać informacje geometryczne z równania okręgu.

Example: Dla okręgu o równaniu x2x - 2² + y+1y + 1² = 9:

  • Środek: S2,12, -1
  • Promień: r = 3

Vocabulary:

  • Równanie kanoniczne okręgu: forma równania okręgu, z której łatwo odczytać środek i promień.
  • Równanie ogólne okręgu: alternatywna forma równania okręgu, często używana w obliczeniach algebraicznych.

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

21 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 17 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.

 

Matematyka

10 227

3 lis 2022

3 strony

Równania prostych i odcinków - jak je wyznaczyć?

user profile picture

ania gorzejewska

@miaann

Geometria analityczna: odcinki i proste w układzie współrzędnych. Kluczowe pojęcia obejmują długość odcinka, środek odcinka, równanie prostej oraz równanie okręgu. Dokument przedstawia wzory i definicje niezbędne do analizy geometrycznej figur na płaszczyźnie kartezjańskiej.

• Omówiono wzory na... Pokaż więcej

geometria
analityczna
odcinek w układzie wspołrzędnych
Drugość odcinka
Jeżeń A(X₁1₁) i B (x₂1 y₂) to arugość odcinka AB wyraża sie wzorem
I

Zarejestruj się, aby zobaczyć notatkęTo nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Równoległość i prostopadłość prostych

Ten rozdział koncentruje się na warunkach równoległości i prostopadłości prostych w układzie współrzędnych, przedstawiając kluczowe definicje i wzory.

Równoległość prostych

Omówiono warunek równoległości prostych opisanych równaniami kierunkowymi.

Definicja: Proste o równaniach y = ax + b oraz y = a₁x + b₁ są równoległe wtedy i tylko wtedy, gdy a = a₁.

Prostopadłość prostych

Przedstawiono warunek prostopadłości prostych opisanych równaniami kierunkowymi.

Wzór: Proste y = ax + b oraz y = a₁x + b₁, gdzie a ≠ 0 i a₁ ≠ 0, są prostopadłe wtedy i tylko wtedy, gdy a · a₁ = -1.

Równanie prostej przechodzącej przez dwa punkty

Zaprezentowano wzór na równanie prostej przechodzącej przez dwa punkty.

Wzór: Dla punktów x1,y1x₁, y₁ i x2,y2x₂, y₂, gdzie x₁ ≠ x₂, równanie prostej ma postać: yy1y - y₁ / xx1x - x₁ = y2y1y₂ - y₁ / x2x1x₂ - x₁

Równanie ogólne prostej

Wprowadzono pojęcie równania ogólnego prostej.

Definicja: Równanie ogólne prostej ma postać Ax + By + C = 0, gdzie A² + B² ≠ 0.

Highlight: Równaniem ogólnym można opisać wszystkie proste w układzie współrzędnych, z wyjątkiem prostych prostopadłych do osi OX.

Równoległość i prostopadłość prostych w postaci ogólnej

Omówiono warunki równoległości i prostopadłości dla prostych opisanych równaniami ogólnymi.

Wzór: Proste Ax + By + C = 0 oraz A₁x + B₁y + C₁ = 0 są równoległe wtedy i tylko wtedy, gdy A/B = A₁/B₁.

Wzór: Proste Ax + By + C = 0 oraz A₁x + B₁y + C₁ = 0 są prostopadłe wtedy i tylko wtedy, gdy AA₁ + BB₁ = 0.

geometria
analityczna
odcinek w układzie wspołrzędnych
Drugość odcinka
Jeżeń A(X₁1₁) i B (x₂1 y₂) to arugość odcinka AB wyraża sie wzorem
I

Zarejestruj się, aby zobaczyć notatkęTo nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Równanie okręgu

Ten rozdział skupia się na równaniu okręgu w układzie współrzędnych, przedstawiając jego różne formy i interpretacje geometryczne.

Równanie kanoniczne okręgu

Wprowadzono pojęcie równania kanonicznego okręgu.

Wzór: xx0x - x₀² + yy0y - y₀² = r², gdzie x0,y0x₀, y₀ to środek okręgu, a r to jego promień.

Równanie ogólne okręgu

Omówiono równanie ogólne okręgu i jego interpretację.

Wzór: x² + y² + ax + by + c = 0, gdzie a² + b² - 4c > 0.

Highlight: Z równania ogólnego okręgu można wyznaczyć współrzędne środka i promień:

  • Środek: Sa/2,b/2-a/2, -b/2
  • Promień: r = √(a2+b24c(a² + b² - 4c / 4)

Interpretacja geometryczna

Wyjaśniono, jak odczytywać informacje geometryczne z równania okręgu.

Example: Dla okręgu o równaniu x2x - 2² + y+1y + 1² = 9:

  • Środek: S2,12, -1
  • Promień: r = 3

Vocabulary:

  • Równanie kanoniczne okręgu: forma równania okręgu, z której łatwo odczytać środek i promień.
  • Równanie ogólne okręgu: alternatywna forma równania okręgu, często używana w obliczeniach algebraicznych.
geometria
analityczna
odcinek w układzie wspołrzędnych
Drugość odcinka
Jeżeń A(X₁1₁) i B (x₂1 y₂) to arugość odcinka AB wyraża sie wzorem
I

Zarejestruj się, aby zobaczyć notatkęTo nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Odcinek w układzie współrzędnych

Ten rozdział skupia się na podstawowych pojęciach związanych z odcinkami w układzie współrzędnych kartezjańskich. Omawia kluczowe wzory i definicje niezbędne do analizy geometrycznej.

Długość odcinka

Przedstawiono wzór na długość odcinka AB w układzie współrzędnych. Dla punktów Ax1,y1x₁, y₁ i Bx2,y2x₂, y₂, długość odcinka wyraża się wzorem:

Wzór: |AB| = √(x2x1(x₂ - x₁² + y2y1y₂ - y₁²)

Środek odcinka

Omówiono sposób wyznaczania współrzędnych środka odcinka AB. Dla punktów Ax1,y1x₁, y₁ i Bx2,y2x₂, y₂, współrzędne środka odcinka to:

Wzór: S(x1+x2(x₁ + x₂/2, y1+y2y₁ + y₂/2)

Równanie kierunkowe prostej

Wprowadzono pojęcie równania kierunkowego prostej o postaci y = ax + b.

Definicja: Równanie kierunkowe prostej to równanie w formie y = ax + b, gdzie a to współczynnik kierunkowy, a b to wyraz wolny.

Highlight: Równanie kierunkowe można stosować tylko dla prostych, które nie są prostopadłe do osi OX.

Kąt nachylenia prostej

Wyjaśniono pojęcie kąta nachylenia prostej do osi OX.

Definicja: Kąt nachylenia prostej to kąt między dodatnią półosią OX a prostą, mierzony w kierunku przeciwnym do ruchu wskazówek zegara.

Wzór: Dla prostej y = ax + b, tangens kąta nachylenia α wynosi: tg α = a

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Zobacz, co mówią o nas nasi użytkownicy. Pokochali nas — pokochasz też i Ty.

4.9/5

App Store

4.8/5

Google Play

Aplikacja jest bardzo prosta i dobrze przemyślana. Do tej pory znalazłem wszystko, czego szukałem i mogłem się wiele nauczyć z innych notatek! Na pewno wykorzystam aplikację do pomocy przy robieniu prac domowych! No i oczywiście bardzo pomaga też jako inspiracja do robienia swoich notatek.

Stefan S

użytkownik iOS

Ta aplikacja jest naprawdę świetna. Jest tak wiele notatek i pomocnych informacji [...]. Moim problematycznym przedmiotem jest język niemiecki, a w aplikacji jest w czym wybierać. Dzięki tej aplikacji poprawiłam swój niemiecki. Polecam ją każdemu.

Samantha Klich

użytkownik Androida

Wow, jestem w szoku. Właśnie wypróbowałam aplikację, ponieważ widziałam ją kilka razy reklamowaną na TikToku jestem absolutnie w szoku. Ta aplikacja jest POMOCĄ, której potrzebujesz w szkole i przede wszystkim oferuje tak wiele rzeczy jak notatki czy streszczenia, które są BARDZO pomocne w moim przypadku.

Anna

użytkownik iOS

Kocham tę aplikację! Pomaga mi w zadaniach domowych, motywuje mnie i polepsza mi dzień. Dzięki tej aplikacji moje oceny się poprawiły. Lepszej aplikacji nie znajdę!🩷

Patrycja

użytkowniczka iOS

Super aplikacja! Ma odpowiedzi na wszystkie zadania. Testuję ją od paru miesięcy i jest po prostu perfekcyjna.

Szymon

użytkownik Android

Super aplikacja do nauki i sprawdzania wiedzy. Można znaleźć notatki z WSZYSTKICH przedmiotów. Polecam tym, którzy celują w oceny 5 i 6 😄​

Szymon

użytkownik iOS

Aplikacja jest po prostu świetna! Wystarczy, że wpiszę w pasku wyszukiwania swój temat i od razu mam wyniki. Nie muszę oglądać 10 filmów na YouTube, żeby coś zrozumieć, więc oszczędzam swój czas. Po prostu polecam!

Kuba T

użytkownik Androida

W szkole byłem bardzo kiepski z matematyki, ale dzięki tej aplikacji radzę sobie teraz lepiej. Jestem bardzo wdzięczny, że ją stworzyliście.

Kriss

użytkownik Androida

Korzystam z Knowunity od ponad roku i jest mega! Najlepsze opcje z tej apki: ⭐️ Gotowe notatki ⭐️ Spersonalizowane treści ⭐️ Dostęp do chatu GPT W WERSJI SZKOLNEJ ⭐️ Konwersacje z innymi uczniami 🤍 NAUKA WRESZCIE NIE JEST NUDNA 🤍

Gosia

użytkowniczka Android

Bardzo lubię aplikację Knowunity, ponieważ pomaga mi w nauce. Odkąd ją mam moje oceny się poprawiają :)

Sara

użytkowniczka iOS

Aplikacja jest niezawodna! Polecam 👍💙

Krzysztof

użytkownik Android

Bardzo fajna aplikacja. Pomaga przygotować się do sprawdzianu, kartkówki lub odpowiedzi ustnej.

Oliwia

użytkowniczka iOS

Aplikacja jest bardzo prosta i dobrze przemyślana. Do tej pory znalazłem wszystko, czego szukałem i mogłem się wiele nauczyć z innych notatek! Na pewno wykorzystam aplikację do pomocy przy robieniu prac domowych! No i oczywiście bardzo pomaga też jako inspiracja do robienia swoich notatek.

Stefan S

użytkownik iOS

Ta aplikacja jest naprawdę świetna. Jest tak wiele notatek i pomocnych informacji [...]. Moim problematycznym przedmiotem jest język niemiecki, a w aplikacji jest w czym wybierać. Dzięki tej aplikacji poprawiłam swój niemiecki. Polecam ją każdemu.

Samantha Klich

użytkownik Androida

Wow, jestem w szoku. Właśnie wypróbowałam aplikację, ponieważ widziałam ją kilka razy reklamowaną na TikToku jestem absolutnie w szoku. Ta aplikacja jest POMOCĄ, której potrzebujesz w szkole i przede wszystkim oferuje tak wiele rzeczy jak notatki czy streszczenia, które są BARDZO pomocne w moim przypadku.

Anna

użytkownik iOS

Kocham tę aplikację! Pomaga mi w zadaniach domowych, motywuje mnie i polepsza mi dzień. Dzięki tej aplikacji moje oceny się poprawiły. Lepszej aplikacji nie znajdę!🩷

Patrycja

użytkowniczka iOS

Super aplikacja! Ma odpowiedzi na wszystkie zadania. Testuję ją od paru miesięcy i jest po prostu perfekcyjna.

Szymon

użytkownik Android

Super aplikacja do nauki i sprawdzania wiedzy. Można znaleźć notatki z WSZYSTKICH przedmiotów. Polecam tym, którzy celują w oceny 5 i 6 😄​

Szymon

użytkownik iOS

Aplikacja jest po prostu świetna! Wystarczy, że wpiszę w pasku wyszukiwania swój temat i od razu mam wyniki. Nie muszę oglądać 10 filmów na YouTube, żeby coś zrozumieć, więc oszczędzam swój czas. Po prostu polecam!

Kuba T

użytkownik Androida

W szkole byłem bardzo kiepski z matematyki, ale dzięki tej aplikacji radzę sobie teraz lepiej. Jestem bardzo wdzięczny, że ją stworzyliście.

Kriss

użytkownik Androida

Korzystam z Knowunity od ponad roku i jest mega! Najlepsze opcje z tej apki: ⭐️ Gotowe notatki ⭐️ Spersonalizowane treści ⭐️ Dostęp do chatu GPT W WERSJI SZKOLNEJ ⭐️ Konwersacje z innymi uczniami 🤍 NAUKA WRESZCIE NIE JEST NUDNA 🤍

Gosia

użytkowniczka Android

Bardzo lubię aplikację Knowunity, ponieważ pomaga mi w nauce. Odkąd ją mam moje oceny się poprawiają :)

Sara

użytkowniczka iOS

Aplikacja jest niezawodna! Polecam 👍💙

Krzysztof

użytkownik Android

Bardzo fajna aplikacja. Pomaga przygotować się do sprawdzianu, kartkówki lub odpowiedzi ustnej.

Oliwia

użytkowniczka iOS