Czworokąty w geometrii płaskiej
Ta strona koncentruje się na właściwościach czworokątów, prezentując kluczowe twierdzenia i wzory przydatne przy rozwiązywaniu zadań z geometrii płaskiej.
Highlight: W trapezie odcinek łączący środki ramion jest równoległy do podstaw i ma długość równą połowie sumy długości podstaw.
Dla okręgu opisanego na czworokącie, suma przeciwległych kątów musi wynosić 180°. Natomiast dla okręgu wpisanego w czworokąt, sumy długości przeciwległych boków muszą być równe.
Example: Dla okręgu wpisanego w czworokąt o bokach a, b, c, d musi zachodzić: a + c = b + d.
Przedstawiono wzory na pola różnych czworokątów:
- Równoległobok: P = ah lub P = ab sin α
- Romb: P = ah lub P = e f/2 lub P = a² sin α
Vocabulary: Przekątna to odcinek łączący przeciwległe wierzchołki wielokąta.
Ważne twierdzenie mówi, że jeśli w czworokąt wypukły można wpisać okrąg, to jego pole wynosi P = rs, gdzie r to promień okręgu wpisanego, a s to połowa obwodu czworokąta.
Definition: Czworokąt wypukły to taki, w którym wszystkie kąty wewnętrzne są mniejsze niż 180°.
Dla dowolnego czworokąta wypukłego pole można obliczyć ze wzoru P = 1/2 d₁d₂ sin α, gdzie d₁ i d₂ to długości przekątnych, a α to kąt między nimi.
Ta strona dostarcza cennych informacji dla uczniów przygotowujących się do matury z geometrii płaskiej, szczególnie w zakresie zadań dotyczących czworokątów.