NWW i NWD - jak obliczać?
NWW to najmniejsza wspólna wielokrotność, czyli najmniejsza liczba, która dzieli się przez dwie (lub więcej) liczby. Aby ją znaleźć, najpierw rozkładamy liczby na czynniki pierwsze. Potem sprawdzamy, który czynnik ile razy występuje i bierzemy go z największą potęgą. Na końcu mnożymy wszystkie wybrane czynniki.
Na przykład, obliczając NWW(35,91):
- 35 = 5 × 7
- 91 = 7 × 13
- NWW(35,91) = 5 × 7 × 13 = 455
NWD to największy wspólny dzielnik, czyli największa liczba, która dzieli obie liczby bez reszty. Aby go obliczyć, rozkładamy liczby na czynniki pierwsze i wybieramy te, które występują w obu liczbach. Mnożymy je, otrzymując NWD.
💡 Wskazówka: NWW zawsze wybiera każdy czynnik z największą potęgą, a NWD tylko wspólne czynniki!
Na przykład, obliczając NWD(27,9):
- 27 = 3³
- 9 = 3²
- NWD(27,9) = 3² = 9