Twierdzenie Pitagorasa - podstawy
Twierdzenie Pitagorasa mówi, że w trójkącie prostokątnym suma kwadratów długości przyprostokątnych jest równa kwadratowi długości przeciwprostokątnej. Zapisujemy to wzorem: a² + b² = c², gdzie a i b to długości przyprostokątnych, a c to długość przeciwprostokątnej.
Wzór ten działa tylko w trójkątach prostokątnych, czyli takich, które mają jeden kąt prosty (90°). Jest to super narzędzie do obliczania długości boków, gdy znasz dwa pozostałe.
Zobaczmy to na przykładzie: jeśli mamy trójkąt prostokątny o przyprostokątnych 3 i 4, to możemy obliczyć przeciwprostokątną: 3² + 4² = c², czyli 9 + 16 = 25, więc c = 5.
💡 Ciekawostka: Znając wzór na przeciwprostokątną w trójkącie prostokątnym, możesz rozwiązać wiele praktycznych problemów - od mierzenia odległości po projektowanie konstrukcji!