Przedmioty

Przedmioty

Więcej

Geometria analityczna - zadania

Zobacz

Geometria analityczna - zadania

This document covers key concepts in geometria płaska zadania and geometria na płaszczyźnie kartezjańskiej zadania maturalne pdf. It focuses on calculating distances between points, finding midpoints of line segments, and working with circle equations in the coordinate plane. The material is suitable for high school students preparing for exams like the matura.

Key topics include:
• Using the distance formula to find lengths of line segments
• Determining if triangles are equilateral or right-angled based on side lengths
• Finding coordinates of midpoints
• Working with equations of lines and circles
• Calculating distances from points to lines

The problems demonstrate practical applications of these geometric concepts and formulas in the coordinate plane.

24.01.2023

3614

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Points of Intersection and Distances to Lines

This page focuses on finding points of intersection between lines and circles, as well as calculating distances from points to lines.

Key concepts covered:

• Determining if a line intersects a circle by comparing the distance from the center to the line with the circle's radius • Using the point-to-line distance formula

Formula: Distance from point (x₀,y₀) to line ax+by+c=0 is: d = |ax₀ + by₀ + c| / √(a² + b²)

Several example problems are solved, including:

• Finding intersection points for y=4 and a circle with center S(3,4) and radius 5 • Calculating the distance from point A(-3,0) to line 2x+y-4=0

Vocabulary: A line is tangent to a circle if it intersects the circle at exactly one point.

The page also covers determining if triangles are equilateral or right-angled based on calculated side lengths and distances.

Highlight: Understanding how to calculate distances between points and lines is essential for solving more advanced planimetria - zadania involving geometric shapes in the coordinate plane.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Midpoints and Triangle Properties

This page covers finding midpoints of line segments and using this information to analyze triangle properties.

Key concepts include:

• Calculating coordinates of the midpoint of a line segment • Determining if a triangle is equilateral or right-angled based on side lengths

Formula: The midpoint formula for points A(x₁,y₁) and B(x₂,y₂) is: S = ((x₁+x₂)/2, (y₁+y₂)/2)

Several example problems are worked out, such as:

• Finding the midpoint of segment AB with A(-2,-1) and B(6,3) • Determining if triangle ABC with given vertices is equilateral and/or right-angled

Example: For triangle ABC with A(-4,0), B(-1,-3), and C(5,3): Calculate |AB|, |AC|, and |BC| using the distance formula Check if (|AB|)² + (|BC|)² = (|AC|)² to determine if it's right-angled Compare side lengths to see if it's equilateral

The page also covers finding the coordinates of one endpoint of a segment given the other endpoint and the midpoint.

Highlight: Mastering midpoint calculations and triangle analysis is crucial for solving more complex geometria zadania liceum pdf problems involving polygons and other shapes in the coordinate plane.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Line and Circle Equations

This page focuses on working with equations of lines and circles in the coordinate plane.

Key concepts covered:

• Finding points on a line given certain conditions • Determining equations of circles given center and radius • Working with general and standard forms of circle equations

Example problems include:

• Finding coordinates of points on a line that are a specific distance from a given point • Writing the equation of a circle with given center and radius

Formula: The general form of a circle equation is: (x - h)² + (y - k)² = r² where (h,k) is the center and r is the radius

Several circle equations are given, and students must identify the center and radius:

• (x - 2)² + (y - 5)² = 16 → Center: (2,5), Radius: 4 • x² + (y + 2.5)² = 10 → Center: (0,-2.5), Radius: √10

Highlight: Understanding how to work with równanie okręgu zadania is essential for solving more advanced geometry problems involving tangent lines, intersections, and areas.

The page also touches on finding equations of circles passing through specific points.

Vocabulary: The standard form of a circle equation has the center at the origin: x² + y² = r²

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Distance Formula and Circle Equations

This page continues to explore applications of the distance formula and circle equations in the coordinate plane.

Key concepts include:

• Using the distance formula to find circle equations • Determining center and radius from general form circle equations • Working with circles centered at the origin

Several example problems are presented:

• Finding the equation of a circle with center P(5,-12) passing through the origin • Identifying center and radius for circles given in general form

Example: For (x + 5)² + (y + 9)² = 225: Center: S(-5,-9), Radius: √225 = 15

The page also covers special cases, such as circles with center at the origin:

Formula: A circle centered at (0,0) with radius r has the equation: x² + y² = r²

Students are asked to provide center coordinates and radii for various circle equations, including some with square root values.

Highlight: Proficiency in working with równanie okręgu zadania pdf is crucial for solving more complex geometry problems involving tangent lines, intersections, and areas of circular regions.

The exercises on this page help reinforce the connection between the distance formula and circle equations, which is fundamental in analytic geometry.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Advanced Circle and Line Problems

This page presents more challenging problems involving circles and lines in the coordinate plane, building on concepts from previous sections.

Key topics include:

• Finding equations of circles given specific conditions • Determining points of intersection between lines and circles • Analyzing relationships between circles and lines

Example problems cover:

• Writing the equation of a circle passing through three given points • Finding the equation of a circle with a given center that is tangent to a specific line

Vocabulary: A line is tangent to a circle if it intersects the circle at exactly one point.

The page also introduces more complex scenarios, such as:

• Determining the equation of a circle passing through two given points and having its center on a specified line • Finding the radius of a circle centered at the origin that passes through a given point

Highlight: These advanced geometria zadania liceum pdf Nowa Era problems require synthesizing multiple concepts, including the distance formula, midpoint formula, and circle equations.

Students are encouraged to approach these problems systematically, often breaking them down into smaller steps and using previously learned formulas and techniques.

Example: To find a circle passing through (1,2), (-1,0), and (3,-2):

  1. Use the general form (x-h)² + (y-k)² = r²
  2. Substitute each point into the equation
  3. Solve the resulting system of equations for h, k, and r

These problems help prepare students for more advanced topics in analytic geometry and conic sections.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Review and Advanced Applications

This final page serves as a review of key concepts covered throughout the document and introduces some advanced applications.

Topics reviewed include:

• Distance formula and its applications • Midpoint formula and triangle analysis • Circle equations and their properties

Highlight: Mastery of these fundamental concepts is crucial for success in geometria zadania maturalne pdf and more advanced mathematics courses.

The page also presents some advanced applications, such as:

• Finding the locus of points equidistant from two given points • Determining the equation of a circle that is tangent to two intersecting lines

Example: The locus of points equidistant from (a,0) and (-a,0) is the y-axis, with equation x = 0.

Students are encouraged to think creatively and apply their knowledge to solve these more complex problems.

Vocabulary: The locus of points is the set of all points satisfying a given condition.

The document concludes with a reminder of the importance of practice and problem-solving strategies in mastering geometric concepts.

Quote: "Geometry is not true, it is advantageous." - Henri Poincaré

This final section helps students consolidate their understanding and prepares them for tackling more advanced geometria na płaszczyźnie kartezjańskiej zadania maturalne pdf problems.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Distance Between Points and Line Segments

This page covers calculating distances between points and lengths of line segments in the coordinate plane using the distance formula.

Definition: The distance formula for points A(x₁,y₁) and B(x₂,y₂) is: d = √[(x₂-x₁)² + (y₂-y₁)²]

Several example problems are worked out step-by-step, including:

• Finding |AB| for points A(-3,-1) and B(-5,-1) • Calculating the distance between A(1,3) and B(1,-1)
• Determining |AB| for points with square root coordinates

Example: For A(3+√3, √7) and B(3,-4-√7): |AB| = √[(3-(3+√3))² + (-4-√7-√7)²] = √[(-3)² + (-4)²] = √(9+16) = 5

The page also covers checking if triangles are equilateral or right-angled based on calculated side lengths.

Highlight: Knowing how to apply the distance formula efficiently is crucial for solving more complex geometria zadania maturalne pdf problems involving triangles and other shapes.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zobacz

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

15 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.

Geometria analityczna - zadania

This document covers key concepts in geometria płaska zadania and geometria na płaszczyźnie kartezjańskiej zadania maturalne pdf. It focuses on calculating distances between points, finding midpoints of line segments, and working with circle equations in the coordinate plane. The material is suitable for high school students preparing for exams like the matura.

Key topics include:
• Using the distance formula to find lengths of line segments
• Determining if triangles are equilateral or right-angled based on side lengths
• Finding coordinates of midpoints
• Working with equations of lines and circles
• Calculating distances from points to lines

The problems demonstrate practical applications of these geometric concepts and formulas in the coordinate plane.

24.01.2023

3614

 

2/3

 

Matematyka

143

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Points of Intersection and Distances to Lines

This page focuses on finding points of intersection between lines and circles, as well as calculating distances from points to lines.

Key concepts covered:

• Determining if a line intersects a circle by comparing the distance from the center to the line with the circle's radius • Using the point-to-line distance formula

Formula: Distance from point (x₀,y₀) to line ax+by+c=0 is: d = |ax₀ + by₀ + c| / √(a² + b²)

Several example problems are solved, including:

• Finding intersection points for y=4 and a circle with center S(3,4) and radius 5 • Calculating the distance from point A(-3,0) to line 2x+y-4=0

Vocabulary: A line is tangent to a circle if it intersects the circle at exactly one point.

The page also covers determining if triangles are equilateral or right-angled based on calculated side lengths and distances.

Highlight: Understanding how to calculate distances between points and lines is essential for solving more advanced planimetria - zadania involving geometric shapes in the coordinate plane.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Midpoints and Triangle Properties

This page covers finding midpoints of line segments and using this information to analyze triangle properties.

Key concepts include:

• Calculating coordinates of the midpoint of a line segment • Determining if a triangle is equilateral or right-angled based on side lengths

Formula: The midpoint formula for points A(x₁,y₁) and B(x₂,y₂) is: S = ((x₁+x₂)/2, (y₁+y₂)/2)

Several example problems are worked out, such as:

• Finding the midpoint of segment AB with A(-2,-1) and B(6,3) • Determining if triangle ABC with given vertices is equilateral and/or right-angled

Example: For triangle ABC with A(-4,0), B(-1,-3), and C(5,3): Calculate |AB|, |AC|, and |BC| using the distance formula Check if (|AB|)² + (|BC|)² = (|AC|)² to determine if it's right-angled Compare side lengths to see if it's equilateral

The page also covers finding the coordinates of one endpoint of a segment given the other endpoint and the midpoint.

Highlight: Mastering midpoint calculations and triangle analysis is crucial for solving more complex geometria zadania liceum pdf problems involving polygons and other shapes in the coordinate plane.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Line and Circle Equations

This page focuses on working with equations of lines and circles in the coordinate plane.

Key concepts covered:

• Finding points on a line given certain conditions • Determining equations of circles given center and radius • Working with general and standard forms of circle equations

Example problems include:

• Finding coordinates of points on a line that are a specific distance from a given point • Writing the equation of a circle with given center and radius

Formula: The general form of a circle equation is: (x - h)² + (y - k)² = r² where (h,k) is the center and r is the radius

Several circle equations are given, and students must identify the center and radius:

• (x - 2)² + (y - 5)² = 16 → Center: (2,5), Radius: 4 • x² + (y + 2.5)² = 10 → Center: (0,-2.5), Radius: √10

Highlight: Understanding how to work with równanie okręgu zadania is essential for solving more advanced geometry problems involving tangent lines, intersections, and areas.

The page also touches on finding equations of circles passing through specific points.

Vocabulary: The standard form of a circle equation has the center at the origin: x² + y² = r²

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Distance Formula and Circle Equations

This page continues to explore applications of the distance formula and circle equations in the coordinate plane.

Key concepts include:

• Using the distance formula to find circle equations • Determining center and radius from general form circle equations • Working with circles centered at the origin

Several example problems are presented:

• Finding the equation of a circle with center P(5,-12) passing through the origin • Identifying center and radius for circles given in general form

Example: For (x + 5)² + (y + 9)² = 225: Center: S(-5,-9), Radius: √225 = 15

The page also covers special cases, such as circles with center at the origin:

Formula: A circle centered at (0,0) with radius r has the equation: x² + y² = r²

Students are asked to provide center coordinates and radii for various circle equations, including some with square root values.

Highlight: Proficiency in working with równanie okręgu zadania pdf is crucial for solving more complex geometry problems involving tangent lines, intersections, and areas of circular regions.

The exercises on this page help reinforce the connection between the distance formula and circle equations, which is fundamental in analytic geometry.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Advanced Circle and Line Problems

This page presents more challenging problems involving circles and lines in the coordinate plane, building on concepts from previous sections.

Key topics include:

• Finding equations of circles given specific conditions • Determining points of intersection between lines and circles • Analyzing relationships between circles and lines

Example problems cover:

• Writing the equation of a circle passing through three given points • Finding the equation of a circle with a given center that is tangent to a specific line

Vocabulary: A line is tangent to a circle if it intersects the circle at exactly one point.

The page also introduces more complex scenarios, such as:

• Determining the equation of a circle passing through two given points and having its center on a specified line • Finding the radius of a circle centered at the origin that passes through a given point

Highlight: These advanced geometria zadania liceum pdf Nowa Era problems require synthesizing multiple concepts, including the distance formula, midpoint formula, and circle equations.

Students are encouraged to approach these problems systematically, often breaking them down into smaller steps and using previously learned formulas and techniques.

Example: To find a circle passing through (1,2), (-1,0), and (3,-2):

  1. Use the general form (x-h)² + (y-k)² = r²
  2. Substitute each point into the equation
  3. Solve the resulting system of equations for h, k, and r

These problems help prepare students for more advanced topics in analytic geometry and conic sections.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Review and Advanced Applications

This final page serves as a review of key concepts covered throughout the document and introduces some advanced applications.

Topics reviewed include:

• Distance formula and its applications • Midpoint formula and triangle analysis • Circle equations and their properties

Highlight: Mastery of these fundamental concepts is crucial for success in geometria zadania maturalne pdf and more advanced mathematics courses.

The page also presents some advanced applications, such as:

• Finding the locus of points equidistant from two given points • Determining the equation of a circle that is tangent to two intersecting lines

Example: The locus of points equidistant from (a,0) and (-a,0) is the y-axis, with equation x = 0.

Students are encouraged to think creatively and apply their knowledge to solve these more complex problems.

Vocabulary: The locus of points is the set of all points satisfying a given condition.

The document concludes with a reminder of the importance of practice and problem-solving strategies in mastering geometric concepts.

Quote: "Geometry is not true, it is advantageous." - Henri Poincaré

This final section helps students consolidate their understanding and prepares them for tackling more advanced geometria na płaszczyźnie kartezjańskiej zadania maturalne pdf problems.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Distance Between Points and Line Segments

This page covers calculating distances between points and lengths of line segments in the coordinate plane using the distance formula.

Definition: The distance formula for points A(x₁,y₁) and B(x₂,y₂) is: d = √[(x₂-x₁)² + (y₂-y₁)²]

Several example problems are worked out step-by-step, including:

• Finding |AB| for points A(-3,-1) and B(-5,-1) • Calculating the distance between A(1,3) and B(1,-1)
• Determining |AB| for points with square root coordinates

Example: For A(3+√3, √7) and B(3,-4-√7): |AB| = √[(3-(3+√3))² + (-4-√7-√7)²] = √[(-3)² + (-4)²] = √(9+16) = 5

The page also covers checking if triangles are equilateral or right-angled based on calculated side lengths.

Highlight: Knowing how to apply the distance formula efficiently is crucial for solving more complex geometria zadania maturalne pdf problems involving triangles and other shapes.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

1. Oblice
Geometria analityczna
odległość między punktami Ai B
a) A(-3,-1), B(-5, -1)
|AB| = √ (-5-(-3))²+ (-1-(-1)²
|ABI= √(-2)² + (0)²
|AB

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

15 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.