Przedmioty

Przedmioty

Więcej

Tablice Matematyczne do Wydruku i PDF: Wzory dla Każdego Ucznia

Zobacz

Tablice Matematyczne do Wydruku i PDF: Wzory dla Każdego Ucznia
user profile picture

doll_222

@doll_222

·

59 Obserwujących

Obserwuj

Najlepszy uczeń w klasie

The document provides essential mathematical formulas and concepts, serving as a comprehensive karta wzorów matematyka for students. It covers algebraic expressions, trigonometric functions, geometric formulas, and basic calculus concepts, making it an invaluable resource for matematyka gryzie wzory pdf and exam preparation.

• Key areas covered include algebraic identities, logarithms, arithmetic and geometric sequences, trigonometric ratios, and formulas for various geometric shapes.
• The document serves as a condensed version of tablice matematyczne - pdf, ideal for quick reference during exams or study sessions.
• It includes formulas for areas, volumes, and trigonometric relationships, essential for solving complex mathematical problems.
• The content is presented in a clear, concise manner, making it suitable for students at various levels of mathematical proficiency.

4.09.2022

3213

Wzory
• a (b + c)=a²b+a•c
·lal =
r
a dla a>0
dla a <0
• (a + b)² =a² +2·a·b +6²
• (a-61²=a²-2·a·b+b²
-a³ +6³ = (a + b) (a²-a6+6²)
• a³-6³ =

Zobacz

Page 2: Logarithms, Sequences, and Geometric Formulas

This page delves into more advanced mathematical concepts, focusing on logarithms, sequences, and geometric formulas. It serves as an excellent karta wzorów matematyka for students preparing for higher-level mathematics exams or those studying advanced topics in algebra and geometry.

The page begins with logarithmic properties, including the logarithm of a product, the logarithm of a power, and the change of base formula. These properties are essential for simplifying and solving logarithmic equations.

Example: The logarithm of a product, log₀(xy) = log₀x + log₀y, allows us to break down complex logarithmic expressions into simpler terms.

Next, the document presents formulas for arithmetic and geometric sequences. For arithmetic sequences, it provides the formula for the nth term and the sum of n terms. Similarly, for geometric sequences, it offers formulas for the nth term and the sum of n terms.

Definition: An arithmetic sequence is a sequence where the difference between consecutive terms is constant, while a geometric sequence is one where each term is a constant multiple of the previous term.

The page then transitions to geometric formulas, starting with the height of an equilateral triangle and the Thales theorem. It continues with volume formulas for cylinders, cones, and spheres, as well as the surface area of a sphere.

Highlight: The volume of a sphere, V = (4/3)πr³, is a crucial formula in geometry and physics, used in various applications from calculating the volume of planets to determining the amount of liquid a spherical container can hold.

Trigonometric ratios and identities are also covered, including sine, cosine, tangent, and cotangent. The page concludes with formulas for the area of a triangle and introduces the concepts of linear and quadratic functions.

Vocabulary: Trigonometric ratios are relationships between the sides of a right triangle and its angles, fundamental in trigonometry and many practical applications.

Wzory
• a (b + c)=a²b+a•c
·lal =
r
a dla a>0
dla a <0
• (a + b)² =a² +2·a·b +6²
• (a-61²=a²-2·a·b+b²
-a³ +6³ = (a + b) (a²-a6+6²)
• a³-6³ =

Zobacz

Page 3: Advanced Mathematical Concepts

This final page of the tablice matematyczne do wydruku covers more advanced mathematical concepts, including inverse proportionality and the equation of a circle. These topics are crucial for students studying higher-level mathematics and preparing for advanced exams.

The page begins with the formula for inverse proportionality, y = k/x. This concept is fundamental in various fields of mathematics and science, describing relationships where one quantity increases as another decreases in proportion so that their product is constant.

Definition: Inverse proportionality is a relationship between two variables where their product is constant, often represented by the equation xy = k, where k is a constant.

The document then presents the general equation of a circle, (x - a)² + (y - b)² = r². This formula is essential in analytic geometry and has numerous applications in physics and engineering.

Example: The equation (x - 3)² + (y + 2)² = 25 represents a circle with its center at the point (3, -2) and a radius of 5 units.

While this page is shorter than the previous two, it introduces concepts that are fundamental to more advanced mathematical studies. These formulas serve as a bridge between basic algebra and geometry and more complex mathematical analysis.

Highlight: Understanding the equation of a circle is crucial for studying conic sections, a topic that combines algebraic and geometric concepts and has applications in fields such as astronomy and physics.

This page, along with the previous two, forms a comprehensive karta wzorów matematyka 2024, providing students with a valuable resource for their mathematical studies and exam preparation.

Wzory
• a (b + c)=a²b+a•c
·lal =
r
a dla a>0
dla a <0
• (a + b)² =a² +2·a·b +6²
• (a-61²=a²-2·a·b+b²
-a³ +6³ = (a + b) (a²-a6+6²)
• a³-6³ =

Zobacz

Page 1: Algebraic Formulas and Sequences

This page focuses on fundamental algebraic formulas and sequence-related concepts, providing a solid foundation for more advanced mathematical topics. The content serves as an excellent resource for students preparing for exams or seeking to reinforce their understanding of key mathematical principles.

The page begins with the distributive property of multiplication over addition, represented by the formula a(b + c) = ab + ac. This fundamental concept is crucial for simplifying algebraic expressions and solving equations.

Definition: The distributive property states that multiplying a number by a sum is the same as multiplying the number by each addend and then adding the products.

Next, the page introduces the concept of absolute value, denoted by |a|, which is defined differently for positive and negative numbers. This is followed by important algebraic identities such as the square of a sum (a + b)² and the square of a difference (a - b)².

Example: The square of a sum (a + b)² expands to a² + 2ab + b², which is frequently used in algebraic manipulations and problem-solving.

The document then presents formulas for the sum and difference of cubes, which are particularly useful in factoring polynomials and solving certain types of equations.

Highlight: The formula for the sum of cubes, a³ + b³ = (a + b)(a² - ab + b²), is a powerful tool for factoring and simplifying complex algebraic expressions.

The page concludes with various formulas for calculating means, including arithmetic, harmonic, and geometric means for both two numbers and n numbers. These concepts are fundamental in statistics and data analysis.

Vocabulary: The arithmetic mean is the sum of a list of numbers divided by the count of numbers in the list, commonly known as the average.

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

15 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.

Tablice Matematyczne do Wydruku i PDF: Wzory dla Każdego Ucznia

user profile picture

doll_222

@doll_222

·

59 Obserwujących

Obserwuj

Najlepszy uczeń w klasie

The document provides essential mathematical formulas and concepts, serving as a comprehensive karta wzorów matematyka for students. It covers algebraic expressions, trigonometric functions, geometric formulas, and basic calculus concepts, making it an invaluable resource for matematyka gryzie wzory pdf and exam preparation.

• Key areas covered include algebraic identities, logarithms, arithmetic and geometric sequences, trigonometric ratios, and formulas for various geometric shapes.
• The document serves as a condensed version of tablice matematyczne - pdf, ideal for quick reference during exams or study sessions.
• It includes formulas for areas, volumes, and trigonometric relationships, essential for solving complex mathematical problems.
• The content is presented in a clear, concise manner, making it suitable for students at various levels of mathematical proficiency.

4.09.2022

3213

 

1/2

 

Matematyka

132

Wzory
• a (b + c)=a²b+a•c
·lal =
r
a dla a>0
dla a <0
• (a + b)² =a² +2·a·b +6²
• (a-61²=a²-2·a·b+b²
-a³ +6³ = (a + b) (a²-a6+6²)
• a³-6³ =

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Page 2: Logarithms, Sequences, and Geometric Formulas

This page delves into more advanced mathematical concepts, focusing on logarithms, sequences, and geometric formulas. It serves as an excellent karta wzorów matematyka for students preparing for higher-level mathematics exams or those studying advanced topics in algebra and geometry.

The page begins with logarithmic properties, including the logarithm of a product, the logarithm of a power, and the change of base formula. These properties are essential for simplifying and solving logarithmic equations.

Example: The logarithm of a product, log₀(xy) = log₀x + log₀y, allows us to break down complex logarithmic expressions into simpler terms.

Next, the document presents formulas for arithmetic and geometric sequences. For arithmetic sequences, it provides the formula for the nth term and the sum of n terms. Similarly, for geometric sequences, it offers formulas for the nth term and the sum of n terms.

Definition: An arithmetic sequence is a sequence where the difference between consecutive terms is constant, while a geometric sequence is one where each term is a constant multiple of the previous term.

The page then transitions to geometric formulas, starting with the height of an equilateral triangle and the Thales theorem. It continues with volume formulas for cylinders, cones, and spheres, as well as the surface area of a sphere.

Highlight: The volume of a sphere, V = (4/3)πr³, is a crucial formula in geometry and physics, used in various applications from calculating the volume of planets to determining the amount of liquid a spherical container can hold.

Trigonometric ratios and identities are also covered, including sine, cosine, tangent, and cotangent. The page concludes with formulas for the area of a triangle and introduces the concepts of linear and quadratic functions.

Vocabulary: Trigonometric ratios are relationships between the sides of a right triangle and its angles, fundamental in trigonometry and many practical applications.

Wzory
• a (b + c)=a²b+a•c
·lal =
r
a dla a>0
dla a <0
• (a + b)² =a² +2·a·b +6²
• (a-61²=a²-2·a·b+b²
-a³ +6³ = (a + b) (a²-a6+6²)
• a³-6³ =

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Page 3: Advanced Mathematical Concepts

This final page of the tablice matematyczne do wydruku covers more advanced mathematical concepts, including inverse proportionality and the equation of a circle. These topics are crucial for students studying higher-level mathematics and preparing for advanced exams.

The page begins with the formula for inverse proportionality, y = k/x. This concept is fundamental in various fields of mathematics and science, describing relationships where one quantity increases as another decreases in proportion so that their product is constant.

Definition: Inverse proportionality is a relationship between two variables where their product is constant, often represented by the equation xy = k, where k is a constant.

The document then presents the general equation of a circle, (x - a)² + (y - b)² = r². This formula is essential in analytic geometry and has numerous applications in physics and engineering.

Example: The equation (x - 3)² + (y + 2)² = 25 represents a circle with its center at the point (3, -2) and a radius of 5 units.

While this page is shorter than the previous two, it introduces concepts that are fundamental to more advanced mathematical studies. These formulas serve as a bridge between basic algebra and geometry and more complex mathematical analysis.

Highlight: Understanding the equation of a circle is crucial for studying conic sections, a topic that combines algebraic and geometric concepts and has applications in fields such as astronomy and physics.

This page, along with the previous two, forms a comprehensive karta wzorów matematyka 2024, providing students with a valuable resource for their mathematical studies and exam preparation.

Wzory
• a (b + c)=a²b+a•c
·lal =
r
a dla a>0
dla a <0
• (a + b)² =a² +2·a·b +6²
• (a-61²=a²-2·a·b+b²
-a³ +6³ = (a + b) (a²-a6+6²)
• a³-6³ =

Zarejestruj się, aby zobaczyć notatkę. To nic nie kosztuje!

Dostęp do wszystkich materiałów

Popraw swoje oceny

Dołącz do milionów studentów

Rejestrując się akceptujesz Warunki korzystania z usługi i Politykę prywatności.

Page 1: Algebraic Formulas and Sequences

This page focuses on fundamental algebraic formulas and sequence-related concepts, providing a solid foundation for more advanced mathematical topics. The content serves as an excellent resource for students preparing for exams or seeking to reinforce their understanding of key mathematical principles.

The page begins with the distributive property of multiplication over addition, represented by the formula a(b + c) = ab + ac. This fundamental concept is crucial for simplifying algebraic expressions and solving equations.

Definition: The distributive property states that multiplying a number by a sum is the same as multiplying the number by each addend and then adding the products.

Next, the page introduces the concept of absolute value, denoted by |a|, which is defined differently for positive and negative numbers. This is followed by important algebraic identities such as the square of a sum (a + b)² and the square of a difference (a - b)².

Example: The square of a sum (a + b)² expands to a² + 2ab + b², which is frequently used in algebraic manipulations and problem-solving.

The document then presents formulas for the sum and difference of cubes, which are particularly useful in factoring polynomials and solving certain types of equations.

Highlight: The formula for the sum of cubes, a³ + b³ = (a + b)(a² - ab + b²), is a powerful tool for factoring and simplifying complex algebraic expressions.

The page concludes with various formulas for calculating means, including arithmetic, harmonic, and geometric means for both two numbers and n numbers. These concepts are fundamental in statistics and data analysis.

Vocabulary: The arithmetic mean is the sum of a list of numbers divided by the count of numbers in the list, commonly known as the average.

Nie ma nic odpowiedniego? Sprawdź inne przedmioty.

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

Knowunity zostało wyróżnione przez Apple i widnieje się na szczycie listy w sklepie z aplikacjami w kategorii edukacja w takich krajach jak Polska, Niemcy, Włochy, Francje, Szwajcaria i Wielka Brytania. Dołącz do Knowunity już dziś i pomóż milionom uczniów na całym świecie.

Ranked #1 Education App

Pobierz z

Google Play

Pobierz z

App Store

Knowunity jest aplikacją edukacyjną #1 w pięciu krajach europejskich

4.9+

Średnia ocena aplikacji

15 M

Uczniowie korzystają z Knowunity

#1

W rankingach aplikacji edukacyjnych w 12 krajach

950 K+

Uczniowie, którzy przesłali notatki

Nadal nie jesteś pewien? Zobacz, co mówią inni uczniowie...

Użytkownik iOS

Tak bardzo kocham tę aplikację [...] Polecam Knowunity każdemu!!! Moje oceny poprawiły się dzięki tej aplikacji :D

Filip, użytkownik iOS

Aplikacja jest bardzo prosta i dobrze zaprojektowana. Do tej pory zawsze znajdowałam wszystko, czego szukałam :D

Zuzia, użytkownik iOS

Uwielbiam tę aplikację ❤️ właściwie używam jej za każdym razem, gdy się uczę.